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DISCRETE APPROXIMATIONS
RELATED TO NONLINEAR THEORIES OF SOLIDS

GERALD A. WEMPNER

The University of Alabama, Huntsville, Alabama

Abstract—Interpolation and extrapolation are employed to approximate the fields in a nonlinear theory of solid
bodies. Nodal points are employed in the space of position and load, and the continuous fields are essentially
replaced by nodal values. Interpolation between nodes (extrapolation in load) defines a continuous approximation.
The differential equations of the continuum are replaced by algebraic equations of the discrete system. Nonlinear
equations are replaced by a succession of linear equations, as a nonlinear path is approximated by linear segments.

Variational theorems are used as the bases of the algebraic formulations which govern the discrete approxima-
tion. The algebraic equations are related to their differential counterparts.

A generalized arc-length is introduced in the configuration-load space in order to facilitate the incremental
computations near limit points. The arc-length is used as the loading parameter in some illustrative problems.

An appendix describes the viewpoint of finite elements and the continuity conditions which insure the
equivalence of the methods,

NOTATION

Index notations and the summation convention are employed. Latin minuscules signify a spatial coordinate ¢
and represent the numbers 1, 2, 3. Greek minuscules signify a surface coordinate #* and represent the numbers
1, 2. Latin majuscules signify a nodal quantity and represent the number assigned to the node. Indices enclosed
by parentheses are not summed and underlined subscripts are not indices. A comma signifies partial differentiation.
In general, the notations follow the texts of Green and Zerpa [9] and Green and Adkins [10]. Specific notations
follow:

& coordinate (i = 1,2,3)

LR position vector of undeformed, deformed body

g =r, = or/él

2 = g;.g; = component of metric tensor of undeformed body
i = G;. G; = component of metric tensor of deformed body

g = |g;;} = determinant of g;;

G = |G;j} = determinant of G;;

\4 displacement vector

t stress vector {per unit undeformed area)

G reciprocal base vector G'. G; = &

f unit normal to undeformed surface

o =g.0

oht =g A

s = t. Gl

Pe mass density of undeformed body

INTRODUCTION

THE essential difficulty in the analysis of continuous structures rests with our inability to
solve the governing differential equations. These difficulties are often insurmountable if the
equations are nonlinear. On the other hand, the development of computers has provided a
great capability for the numerical solution of large systems of linear algebraic equations.
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1582 GERALD A. WEMPNER

Accordingly, our attention is directed toward means of utilizing the latter capability for
numerical treatment of the nonlinear problems.

The approximation of a continuous function by a spline function [1] is an extension
of the notion that any smooth curve can be approximated by interpolating curves within
small segments. The method of finite elements [2, 3] is a means to construct spline approxi-
mations. A continuous function of position is replaced by a finite set of nodal values. and a
differential equation is replaced by an algebraic equation.

The variables {continuous functions or finite sets) which define the configuration of the
body are expected to change continuously with loading (or time} except at points of in-
stability. The state of the system is defined by the variables of configuration and load:
the successive states trace a path (in function space or in n-dimensional space). A nonlinear
path can be approximated by a succession of linear segments ; each segment corresponds to
an increment in a loading parameter [4, 5] and each step requires the solution of linear
equations.

METHODS OF EXTRAPOLATION AND INTERPOLATION

Approximating the loading path

The ideas of interpolation and extrapolation provides the means to approximate any
continuous function. In most problems of structural mechanics we wish to approximate the
displacement vector V according to a continuum theory. The displacement depends upon
the coordinates of position ¢'(i = 1,2.3) and the loading. For simplicity, we assume a
proportional loading wherein the magnitude of the loads is determined by a parameter
as depicted in Fig. 1, Then

V = V(0,62 0°%; 4. (h

In the event of large rotations, large strains or a nonlinear material, the displacement
of a given particle is a nonlinear function of the load parameter as shown in Fig. 2. The
governing equations are nonlinear, for example, the equation governing the finite deforma-
tions of an elastic body. However, if a body is in a stable state of equilibrium, then the
equations governing a small perturbation are linear, typically

FVL, V2V DAV E(VL VA VI )AL =0 {23

i, 1.
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where F; and F, are linear operators which depend on the reference state (V', V2, V31 1)
and operate on the increments AV’ and AA. Strictly speaking, such equations govern only
infinitesimal changes of state (AV?, A1 — 0), but may hold also for inelastic deformations.
1f (2) has a nontrivial solution AVJ, Al = 0, then the reference state is “critical”, a branch
point or limit point in the loading path; A7/ is a “buckling mode™.
After continuous loading, the body suffers finite deformations governed by functional
equations of the form:
VLV, ¥ 3
F= (F;dVi+F,dd) = 0. {(3a)

{0,0,0:0)

If the body is elastic, then the governing equation (3a) depends solely upon the state
variables, that is

F=NVLVLV3)=0 (3b)

where N is a nonlinear operator.

If the operators of (2) are continuous, then mean values should produce finite, but small,
increments (AV', AVZ, AV?3; AZ) which would interpolate the actual path as depicted at 4
of Fig. 2. Unfortunately, such mean values are unpredictable, but values of the reference
state can be employed to extrapolate the path. However, the approximation can stray from
the path, as shown at B ; such deviation depends upon the relative size of the steps. Correc-
tions are also possible from a priori estimates of the mean values {11, 12] or by a posteriori
correction of the residual error. ‘

In principle, incremental loading is extrapolation and serves to replace the nonlinear
differential equations of a continuum theory by a succession of linear equations. However,
in practice, the successive differential equations are progressively more complicated and
are usually intractable. Consequently, it is also necessary to approximate the function V
with respect to the coordinates 6'. Such approximation leads to linear algebraic equations
governing the incremental displacement.

Approximating functions of position
Any continuous field can be approximated by discrete nodal values with interpolation
between nodes. When the interpolating functions are polynomials the approximating
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function is termed a spline function [1, 13]. In practice, we are interested in such approxima-
tions of unknown solutions of the differential or integral equations governing solid bodies.

In the continuum theory we seek those continuous functions which satisfy the governing
equations. If the system is conservative, we require the continuous displacement which
achieves a minimum value of the energy functional, In our approximation. we seek the
finite set of nodal values which determines the best approximation of the continuous function
in accordance with preselected interpolating functions. If the system is conservative, then
the ““best’” approximation is that which achieves the minimum from the subclass of spline
functions. The procedure is a straightforward, albeit tedious. application of the Rayleigh-
Ritz [14, 15] procedure. If the system is non-conservative, the continuous solution can be
achieved by averaging in the manner of Galerkin [16]. By one scheme or another. any
theory of continua can be converted to a theory of finite sets.

The principle of minimum potential energy has served as the vehicle for most approxi-
mations formed with a variety of interpolating polynomials. Then the energy convergence
follows and, if the body is Hookean, convergence of the field can be proven [17-20]. If the
system is non-conservative, the discrete theory may be achieved by the principle of virtuai
work or the Galerkin procedure. The theorem of minimum complementary energy has also
served as the basis of discrete formulations for the Hookean body and, again, the convergence
can be shown [21]. The stationary theorem of Hellinger-Reissner can also serve as the
basis of the approximation {22, 23]. However, when the stationary condition does not
imply an extremum, then the proof of convergence may not follow.

In the following we review the various energy principles as the bases of spline approxi-
mations of the continua. Particular attention is given to the interpretation of the equations
governing the discrete approximation.

Commutation of the approximating procedures

Two forms of approximation are needed to replace the nonlinear differential equations
of a continuum theory by a succession of linear algebraic equations, namely, the methods of
incremental loading (extrapolation} and finite-elements (interpolation). In principle. the
procedures can be applied in either order. If the former is applied first, the result is a
succession of linear differential equations; subsequent spline approximations of the
continuous fields yield linear algebraic equations. In some instances, this order is the most
practical, especially, if the continuum theory has been formulated from the variational
viewpoint ; for example, the work of Biot [4] or the stability theory of Koiter [24]. However,
there appears to be one advantage to approximating the spatialfield firstand then linearizing
via incremental loads: if the nonlinear algebraic equations are available, it is possible to
assess accumulative errors and to introduce corrective steps.

APPROXIMATING THE FIELDS

Approximate conditions of equilibrium (or motion)
In continuum theories of solids, a stress field satisfies equilibrium if the virtual work
vanishes for an arbitrary but continuous variation 8V of the displacement field:

ffff‘(sffcj-év,,.) do— ( j J (pof - OV) dv—jit.av ds = 0. (4a)
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Here v and s signify the volume and surface of a reference state, s* the stress component

per unit area of that reference state and p, the mass density of that state. Apart from the

absence of couple-stress, the statement (4a) is general ; it applies to finite deformation.
Upon integrating the first integral of (4a) by parts we obtain

_fffv [712 ai(gi(\/gsijcf)+p°f:| .6V du+f£ [onsYG;—t] - 6V ds = 0. (4b)

Following the usual arguments that 8V is arbitrary in v and on s, we arrive at the differential
equations and boundary conditions : the bracket of the first integral must vanish at each
point within v and the bracket of the second integral must vanish at each point on 5. We
reiterate these well-known statements of the continuum theory in order that we may later
draw the analogy with the statements of the discrete theory.

A first step in the approximation of the spatial fields consists of subdividing the body
into finite elements. Often the body is conveniently partitioned into quadrilateral elements
by coordinate surfaces as shown in Fig. 3. Then a typical interior node [ is a particle at the
contiguous corners of eight elements as shown in Fig. 4. The region occupied by these eight
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elements in the reference state is designated v,. The stmplest spline approximation of the
displacement has the form:

V = Y0402 0%)V,. (55
The function f* is continuous in v, and vanishes on the surface of v,. The function s

based upon an interpolation of V between nodes : the simplest polynomial approximation

in the first quadrant yields
e 003 ()3’+()‘U“ 0! ()7()3 0'o20° 0 < (i<
= s - ——— e < k' j
- BT e T e e =S o

Here the origin is placed at the node and ¢/ = 0, i’ define the boundaries of the first
quadrant. With similar interpolation throughout v,, we have

{- “ ‘ _,.l d()l d()‘2 d(); = ! i7a}

If 5; denotes the interface along the ' surface through node 1.

| | J1d0rdet = 1 (i £k # ), (7b)

According to (5), the virtual displacement oV is no longer arbitrary : now only discrete
nodal values oV, are arbitrary. In place of (4a), we have

5V, - UJJ (suc;}_ff,.)du—fffr (of ) dv — f‘[tf‘ds} -0 (8a)

Because /" vanishes outside of v;, each integral extends only through v, depicted in Fig. 4.
Since f" has continuous derivatives within each element, we can integrate-by-parts to obtain

sl T[S
\/g (9

+ ”[On,.si-ic,.—t]_/"ds} = 0. (8b)

[/ | | Lomls? =511 do,,

Notice that a discontinuity of stress is anticipated at the interfaces s, .

If node I is an interior node, i.e. v, lies wholly within v. then the last integral disappears
from (8b). Then, because each nodal displacement is arbitrary, the discrete condition ai
the interior node follows:

a

(( ) 1 : .. o
| f L (r" G+ pof Jf'dH “ [onds? —s")G 1S dsy, = 0. 19)

iy

If the stress is continuous, then the interface integrals vanish in (9) and the discrete condition
asserts that a weighted average of the differential equation vanishes. The result is similar
to a Galerkin averaging of the differential equation, but notice that the differential equation
is averaged over v, only. Moreover, according to (7a), if the derivatives are continuous,
then a mean value of the differential equation vanishes. If the stress is discontinuous at the
interfaces s;, then equation (9) asserts that weighted averages of the jumps must be included
with the average of the stress differential.
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If the approximation of V is the simple tri-linear interpolation of (6), then the corre-
sponding strain approximation in v, is determined solely by the displacements of the nodes
in the lattice of v;. Therefore, if the body is elastic, the corresponding stress approximation
is also determined solely by the nodal displacements of v;. It follows that the equilibrium
equation (9) contains no more than 81 displacement components, the displacement of the
Ith node and its nearest neighbors.

If the stress is discontinuous on the interfaces, then a stress does not exist there in the
usual sense. To establish a meaningful approximation for the stress at a node, we consider
the exterior node J as depicted in Figs. 3 and 5. For simplicity, we suppose that the
boundary lies in a coordinate surface; the portion s, undergoes a prescribed virtual dis-
placement proportional to 4V, . The discrete condition of equilibrium follows from (8):

R’ = JJ;J tf'ds = fJ;J oSG f7 ds — ij [ﬁ(\/gs”Gj),i + pof]f’ dv

+ Jf [onds? — s9)G;1f" dsg,. (10a,b)
S(a)

FiG. 5.

The index o of the final integral signifies that the integration applies only to the two
interfaces through J. The generalized force R’ is defined by (10a). If the traction t on the
boundary is continuous, then, according to (7b),

R,
Sy
where t,, signifies a mean value.
The traction t may be approximated in the form:

t = g8, 62, %)%
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where t* denotes a nodal value, and summation over all nodes is implied. A necessary
condition follows from the virtual work upon s, :

lim — J[ gx [ ds = 3}
5370 55 .

where d% denotes the Kronecker delta. Appropriate forms of the function g, have been

investigated by Brauchli.t

If we split the region v, along one interface and introduce the mean stress t,, upon each
of the contiguous interfaces, then the condition (8) asserts the continuity of such mean
stresses.

It is interesting to compare the conditions of the continuum theory with those of a
discrete approximation: in the continuum theory, the virtual displacement is an arbitrary
continuous function and, therefore, the work must vanish in an arbitrarily small neigh-
borhood within v and, independently, on s. By contrast, the conditions of the approximation
require that the virtual work vanish in each small, but finite, region v, within v and, indepen-
dently, in a shallow layer along the boundary s, as depicted in Fig. 5(b), and, moreover.,
in each piece v, of that layer. The thickness of the layer diminishes as the mesh is refined
and the approximation approaches the continuum.

Approximation by polynomials of higher-degree

A simple tri-linear polynomial is adequate for the approximation of some media.
However, if the energy function depends upon higher derivatives of the displacement (in
addition to the symmetrical strain-component y,;), then the simple interpolation is in-
adequate. An interpolating polynomial is inadequate if the required higher derivatives
vanish identically. An adequate higher-order interpolation introduces nodal values of the
derivatives, e.g. (V;),, and the corresponding generalized forces. The latter are couples
(and higher-order couples) akin to the couple-stresses of the continuum theory {25. 26].

Other stationary theorems and their discrete counterparts

Any stationary (or extremum) theorem of a continuum theory provides a basis for a
discrete approximation. Theorems for finite deformation follow:

Washizu [27, 28] and Fraeijs de Veubeke [18] have presented a general stationary
condition for smail deformations. The theorem for finite deformations follows: the equili-
brium conditions, strain—displacement relations and constitutive equations of a conserva-
tive body are the stationary conditions for the following functional W of the displacement
vector V, the stress tensor s” and the strain tensor y,;.

~»

|

+ ” w(V)ds + ” t.(V—V)ds. (I

Sy

j {U(Yej)+wB(Vi)‘“SU["fij*‘%(gf . Vv;‘*"gj . V.E+v,i . V.;)}} de

Here U is the free energy density (the temperature is assumed constant), wy is the potential
of body forces, w; the potential of the tractions applied upon a portion s; of the surface
and V the displacement prescribed upon a portion sy.

+ His development of the complementary functions was conveyed to the author by Brauchli in private dis-
cussions.
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To employ the general theorem, one approximates the displacement V, the strain y;;
and stress s* by spline functions. Such approximations must approach the required con-
tinuity and generality of their continuous counterparts as the mesh is refined. The resulting
approximation of the integral W is rendered stationary with respect the nodal variations
(8Vy, st/ and dy})). The resulting conditions are discrete counterparts of the continuum
conditions, namely, weighted averages of the equilibrium equations, strain—displacement
equations and constitutive equations.

The Hellinger—Reissner theorem [29, 30] has been used recently by Pister and Dunham
[23] to formulate a discrete approximation. Instead of (11) we have the functional:

W= .”f {U(s)+wp(V)+35(g:. V ;+8;. V,+V,.V )} de

+ H (V) ds+ H t.(V—V)ds (12)

Here U is the complementary energy density (again, the temperature is assumed constant).
Corresponding to the variations of the displacement V and the stress s”, one obtains the
conditions of equilibrium and the constitutive equations (stress~displacement relations).
Again, spline approximations of the displacement and the stress tensor lead to the discrete
conditions, weighted averages of the equilibrium equations and constitutive equations,
respectively.

The Hellinger-Reissner theorem may also apply to certain plastic problems with
appropriate modifications of the functional W : if AV denotes an incremental displacement,
and if the plastic strain increment Ay, derives from a “plastic potential” U, ie.

7
ﬁsij (133., b)
then the theorem applies with the integral modified as follows:
W= f f f {AT(s9)+ U(s)+ 0a(V) +359(G; . AV ,+G,. AV )} do
+ ” wi(V)ds+ H t.(V-V)ds. (14)

In practical applications, in the continuum theory or the discrete approximation, it may
be necessary to cope with yield criteria and conditions for plastic loading. The latter often
have a variational basis (e.g. an energy principle) but a yield criterion may not. However,
the yield criterion can be imposed via a Lagrangian multiplier, as an auxiliary condition
upon the stress field. Then the discrete counterpart is again a weighted average in the small
finite region v;.

The stationary theorem of Reissner [30] has been employed by Greene et al. [31] in
order to relax the continuity requirements, which otherwise beset the analyses of Kirchhoff
plates and shells.
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PARTIAL APPROXIMATION

The shell as a partial finite-element

Many current problems in structural mechanics are concerned with shells. Approxi-
mations of shell theories can be achieved by the methods previously described. Furthermore.
continuum theories of shells have much in common with such approximations. Indeed,
one could say that most approximations of a shell are partial finite elements obtained by
introducing polynomial approximations in one coordinate only, specifically, the thickness
coordinate.

Suppose that the principle of virtual work is employed in the manner of Ritz. together
with the following approximation:

V = V(6L 0%)+, V(0" 09)6°. (15)

Here 0° denotes the distance along the undeformed normal to a reference surface 6° = 0.
The upper and lower surfaces of the shell are defined by 6° = +h,, . In effect, the approxi-
mation (15) is an interpolation in 0°; the displacement V(8', 6% +h,) could replace
NV 0% (N = 0,1) in (15).

Here we do not restrict ourselves to a conservative body, but refer to the deformed state.
Upper and lower surfaces belong to the deformed surface S, on which tractions are
prescribed, as does a portion of the edge defined by a curve C; on #* = 0. For simplicity
we denote length along C, by 6 and length along a normal curve by 0"\, A prime (') signifies
a quantity associated with the local coordinates (0'') at the boundary.

Let us define stress resultants:

fy
e = { fafcj\/(%)(eﬂw dg? (16a)
Joen ¢
ol . G X )
= (N+1)j G, \/(Z)(ef’y\ 46’ (16b)
—n

where N = 0, 1, but could have an extended range. Similarly, we define edge resultants:

hé al
aml = ( r”jG}\/<g“)(93)N de’. (17

ok

Next, we define resultants of surface tractions, y¢, and body forces, yb:

© =136, , /(%)hfxmm)%zfq J(%—)h"” (182)

b = fh* pf\/(g)(93)N 463, (18b)
—-h_

The resultant of external forces is
~f = yb+ne. (19
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The shell equivalents of (4a) and (4b) are obtained by introducing (15) into (4a). Upon
integrating with respect to 6 and employing the definitions (16)-(19), we obtain

SW = J‘f[Nm“.5NV'1+01.§1V-Nf,5NV]dS-f 'l 5V do?  (20a)
s Cy

5 = = [ [ /Ao o] 8o VI A o= ). 8,V} " 06°
s

+ | {[(A,- A)em*— om']. 3V +[(A, . 1)) m*— m'']. 6, V} de>  (20b)
Cy

Here S signifies the deformed reference surface 0% = 0.

The equilibrium conditions implied by (20b) are precisely (a) the three-dimensional
condition integrated through the thickness and (b) the three-dimensional condition multi-
plied by 6° and integrated through the thickness. If the approximation (15) contains higher
powers, then the additional equilibrium equations are higher moments of the three-
dimensional conditions. In short, the equilibrium equations of the resulting shell theory
are weighted averages through the finite thickness, much as a three-dimensional approxi-
mation produces a weighted average through a finite-element.

The Kirchhoff-Love hypothesis asserts that

8Y3a)s = HA5. 0,V +A,.6,V) =0 (21a,bj
where
A, = G(6',6%0).
Equation (21b) serves to express tangential components of §,V in terms of the normal
components of §,V,. In the continuum theory this constraint reduces the number of
differential equations of equilibrium. In the discrete approximation of such continuum
theory the normal component of 6,V , must be continuous, i.e. the surface S must be smooth.
It is simpler to employ the unconstrained continuum theory and then, to impose (21b)
only at points of the interelement boundaries [32, 33].

Approximating the shell by spline function
The vectors \V can be approximated in the manner of (5):

nV(0',6%) = f10", 671V, (22)

Then the Ritz procedure produces conditions of equilibrium which, like (9) and (10), are
weighted averages of the continuum equations, integrals extending over the four elements
contiguous at the Ith node. Also, if the approximations of the stress resultants are dis-
continuous, then jumps are added to the derivatives in the integrands.

In the unconstrained theory of (15), ,V and |V are independent, and Lagrangian
(bilinear) interpolation achieves continuity of the displacement. Discrete constraints can be
imposed upon the transverse shear strain at points of the interfaces. Such constraints insure
that the approximation converges to the Kirchhoff-Love theory. If these are enforced via
Lagrangian multipliers then the multipliers are generalized forces of constraint.

Other stationary principles may serve as the basis of a shell theory and then a discrete
approximation, ie. a finite-element formulation. For example, the general statement of
stationary potential energy can be employed via the energy integral (11). Firstly, one must
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introduce the basic approximations of the shell theory: the approximation (15) must be
augmented by suitable approximations of the stress and strain tensors approximations
were introduced by Reissner [34] and Naghdi [35] in the linear theory. Similar approxi-
mations are applicable to problems of large deflections with small strain. The results are
the equilibrium equations, strain-displacement relations and constitutive equations of the
shell theory.

APPROXIMATING THE LOADING PATH

Incremental displacements, corrections and unstable states

A discrete model of the conservative structural system is governed by a system of non-
linear algebraic equations:+

NQ(V,; 4) = 0. (23)

Forastablestate(V,; 1), an incremental displacement is approximated by the linear system :

éN? N
——AVg = ——AL
av, AVx PR A (24)

Successive increments generate the equilibrium path Vy(A). However, the approximate
path strays from the solution of (23). Various schemes can be employed to improve the
approximation : for example, better estimates for the mean values of the derivatives [11, 12]
and the introduction of higher derivatives [36,37]. Here we suggest a simple approach
which can be effective [38]:

Let the barred () coefficients of (24) be the values of the reference state (V,; 1) (e.g.
point M in Fig. 6). Then the solution of the system (24) provides an approximation
(Vo+ AV,; 2+ AZ) of the nearby equilibrium state (e.g. point N in Fig. 6). Substituting these
values into the left side of (23) determines the errors R?

NC(Vp+AV,: A+AJ) = R (25)

Corrections AVQ may be obtained by the Newton—-Raphson method, i.e.

ONC
NTAT, = —Re. (26)
Vg

Here the double bar () signifies evaluation at the current state (e.g. point N of Fig. 6).
The correction procedure of (26) may be repeated until the errors R? are made as small as
desired. Observe that the coefficients in the left sides of (24) and (26) are the same variables,
but evaluated at different states, i.e. the matrices for the incremental and corrective pro-
cedures are computed in the same way.

Figure 6 depicts the increment (AV ; AZ) which extrapolates the path from M to N,
followed by the correction (A¥ ; 0). Since the stiffness (slope) can change drastically during
loading, uniform loading steps produce varying incremental displacements. Moreover, at
a bifurcation point P or limit point Q, there exists a solution for AA = 0. Therefore, it is

+ To simplify notations, nodal components ¥ j(/ = 1. .. .. m) are relabeled Vy(Q = 1,. ... 3m = n).
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FI1G. 6.

desirable, even necessary, to prescribe an incremental parameter other than the load.
To this end, we define a generalized arc-length S:

ds? = dV, dV,+didi

Now, suppose that a prefix M enumerates a particular step. Then according to (24)

ON¢ JON¢
M[—aT/R_]AM VR +M[—a‘7R‘]AM/1 = 0. (273)
The system (27a) is now augmented by the equation:
(Am- VIAWV +[Ay- 1A]AuA = AS% (27b)

IfQ =1,...,n, then (27a, b) is a linear system of (n+ 1) unknowns (AV,, A1) while AS is
the prescribed loading parameter. Instead of (26) we determine a correction “orthogonal”
to the increment (AV,,, Ad):

6NQ] - ,:6NQ] »
APe+ | 5o |Awd = =i i (N9 (28a)
M+l[aVR MR M+1 aj’ M Mt

[AnVelAuVr +[AutlAyd = 0. (28b)

The correction of (28) is illustrated at B of Fig. 6, while the correction of (26) is depicted at A.
Equation (27b) can hold only if the path is smooth. At the bifurcation point P,

0
‘6N —o

EA
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Here the ensuing step is determined by the eigenvector of the homogeneous system :

g

Having turned the corner at P, we proceed as before. However, in most cases we require only
the computations to the critical load of P and, perhaps, an answer to the question of
stability at the critical load. The latter can be answered by the solution of additional linear
systems as given by Koiter [24].

Examples

Numerous authors have utilized incremental loading to obtain approximations for
nonlinear problems: Argyris [3. 7, 38] has combined incremental loads and finite elements
to treat large deflections and plastic deformations. Martin [39] emploved increments in his
work on large deflections and instability. Hofmeister et al. [40], Zudans [41] and Marcal
[42] have used the incremental approach in plasticity, and Oden [43] has employed in-
cremental loads in nonlinear elasticity. More references are cited in the bibliographies of
Argyris [7] and Oden [§].

Incremental loading has been applied to finite elastic deformation with limited success.
Boedecker [44], Oden and Key [45] have encountered computational difficulties at large
strains. Their approximations grow erratic in a manner described by Richtmeyer and
Morton {46] and illustrated by the approximation of waves, wherein time is an independent
variable, much as the load in our problems.

The finite deflections, buckling and postbuckling of a circular arch provide an example
of the procedures described herein. Details of such computations were presented previously
[47]. The deflection of a steep arch follows a path like OP of Fig. 6; buckling occurs by
sidesway along a path like PR. A very shallow arch deflects symmetrically and snaps-
through at a limit point like Q.

Another problem which illustrates the use of our loading parameter is that of a toroidal
membrane composed of Mooney material (48] and subjected to internal pressure p. The
toroid and pertinent quantities are shown in Fig. 7. The extension ratios in the longitudinal
and meridional directions are

Q o deg

YT op—csinf T dy
The simplest approximation is a two-degree-of-freedom model: the deformed cross-section
is assumed circular with radius C and center at distance R from the axis. Particles are
assumed to maintain their meridional angle. Then average values of 4, and 4, are

Ay o= ;) . Ay == .

Results were obtained with a membrane thickness # = 0-001¢ and the Mooney constants

C, = 0-1C,. Plots of 1, and 4, vs. pressure p are shown in Fig. 8. These results agree with
those displayed by Kydoniefs and Spencer [49].

The symmetrical deflection of a shallow shell provides another illustration : the iruncated

cone of Fig. 9 is deflected by an axial load distributed uniformly on free edges. Differential

equations and a numerical solution were obtained earlier [50]. Now, if those equations are
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approximated by simple differences and the incremental procedure of Fig. 6(B) is used,
then the load—deflection curves of Fig. 9 are obtained. The upper curve is obtained with
100 steps and strays from the better curve obtained with 1000 steps. The latter curve is less
precise than the earlier result [50], because only five sub-intervals of the meridian were
used in the present computations.
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CONCLUSIONS

The familiar notions of interpolations and extrapolation provide effective bases for
numerical studies of many nonlinear problems of solid mechanics.

The use of the variational theorems in the manner of Rayleigh-Ritz serves to relate the
Euler equations and their algebraic counterparts.

The introduction of a generalized arc-length in a configuration-load space provides an
effective loading parameter which facilitates the approximation of nonlinear solutions.

The geometrical interpretations provide some insight to the structure of piece-wise
approximations.

SUMMARY

The notions of interpolation and extrapolation provide access to the nonlinear problems
of elastic and inelastic bodies. The former is the basis for spline approximations which
define the configuration in terms of discrete nodal values. The latter provides the basis for
approximating the nonlinear path.

Algebraic equations governing the approximation are derived by stationary theorems
for finite deformations. The discrete analogues of the continuum equations are interpreted
as weighted averages of their differential counterparts. A general stationary theorem pro-
duces the complete system of discrete analogues : the equilibrium, kinematical and consti-
tutive equations.

The method of incremental-loading is modified by introducing a generalized arc-length
in a configuration-load space. The modified procedure is convenient for computations at



Discrete approximations related to nonlinear theories of solids 1597

limit points and at bifurcation points. The method is illustrated by selected examples of
large deformations and instabilities.

Essential features of the presentation are (1) the relation of the Euler equations to their
algebraic counterparts, (2) a review of the stationary theorems for finite deformations, and
(3) the introduction of a generalized arc-length to facilitate the procedure of incremental
loading.

Details of the developments are omitted to avoid a profusion of symbols which so
often obscure the salient features. Selected references merely provide the basis of previous
and/or related developments; many other contributions are cited in the extensive biblio-
graphies of Felippa and Clough [6], Argyris [7] and Oden [8].
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APPENDIX

Finite element viewpoint

In the method of finite elements it is customary to adopt the following viewpoint : each
element is isolated. The principle of virtual work {or Lagrange’s equations) serves to express
the generalized external forces in terms of the nodal {corner) displacements. Subsequently.
Newton’s law of reaction is imposed at contiguous corners. It follows that the interactions
between elements do no net work. Consequently, the latter viewpoint produces the same
results as our viewpoint. However, it is also interesting to consider the meanings of the
approximate conditions imposed upon the element : suppose that the quadrilateral element
of Fig. 10 is subject to a virtual displacement in accordance with (6), specifically,

8V = A+ 0BH +36C, 0'0) + 6D 6%6°

where @' signifies a local coordinate originating at the particle I of the element. No strain is
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caused by the constant JA, the displacement of particle I. A condition of equilibrium,
corresponding to the virtual displacement JA, requires that the resultant of all external
forces vanishes. The constants dB; can be replaced by the components:

3y, = XG\),. 6B;+G}],. 6B)
dw, ] = HG), . 0B; — G/} . By).
The latter is associated with a rigid-body rotation at particle I:
o0 = 36" 0,G, )

A condition associated with the virtual displacement (JA) requires the vanishing of
external force ; a condition associated with the virtual rotation (de = 3¢/?w,,G,) approaches
the condition of vanishing moment and the symmetry of the stress tensor ; the remaining
conditions associated with the linear terms (6y;;) of our approximation approach the
constitutive equations of the continuum theory. The higher-degree terms of the approxima-
tion are needed to achieve continuity at the interface.

(Received 8 September 1970 ; revised 3 March 1971)

AbcTpakT—HCHONb3yIOTCA MHTEPHONSLUMS U YKCTPANOISALMA I AlMPOKCHMALMM NOJIeH B HellnHeHHOM
TEOPUH TBEPAbIX Te. TIpUMEHAIOTCS y3/10BbIe TOUYKM B IPOCTPAHCTBE TIONOKEHHA ¥ HATPY3KA. CHolLHbIe
MoJIsA 3aMEHSAIOTCA Y3JIOBBIMM BeIMYMHAMHK. MHTepnonsanus Mexny y3namMu/3KCTParoIsius Kacalolascs
Ku/ onpepensieT CIUIOWHYO annpokcuHammioo. JuddepeHunansHple YPAaBHEHUS CILIOIIHOM CPenbl 3aMEH-
AOTCA anredpauyeckiMi YPOBHEHHSIMM NMCKPETHOM CHCTeMBi. HenuHeinble ypaBHEHHs! 3aMEHAIOTCSA
ITOCJIEI0OBATENIBHOCTRIO IMHEHHBIX YPABHEHHH ,, TAK KaK HEJIMHEHHBIE TPAEKTOPHA NPUOIMKAETCH JIMHEHHBIM U
CErMEHTaMH.

Hcnonb3yroTcsi BapHauUMOHHBIE TEOPEMbI, KaK OCHOBBI anrebpauyeckux (OPMYIMPOBOK, KOTOPBIe
obnagaror AMCKPETHBIM NpubnwkeHneM. Anrebpanyeckne ypaBHEHHMsl OTHECEHHBbIE K UX AuddepeHLIHa-
JIBHBIM COOTBETCTBYIOIIMM YaCTSM.

Ilpunimaercs o6oOlUEHHAast [UIMHA apKky B NPOCTPAHCTBE KOHOUIypauHsS—HATPY3KAa, C IENBLIO
yIdy4yuleHHsl PAacyeToB TIpMpalleHMi, BOIM3M I'PaHMUHBIX Touek. MCHONB3yeTCs AAMHA apkH B CMBbICIE
rapaMeTpa Harpy3ku, B HEKOTOPBIX MILTIOCTPATUBHAIX ITPUMEPAX.

B npuioxenuu Na€TCA TOYKA 3PEHHMS KOHEYHBIX WIEMEHTOB M YC/IOBHMSA HENPEPbIBHOCTH, KOTOPbIE
00ecrneyuBaloOT IKBUBAICHTHOCTh 3THX METONOB.



